Basics of Synchronizers

Ottmar Back, Head of Product Management
January 2013
Content

1. Introduction
2. Driveline / Transmission / Shift Mechanism
3. The Synchronization
4. Basics for Synchronizer Calculation
5. Interfaces
6. Functional Problems and Solutions
7. HOERBIGER Capabilities
 7.1. Design & Development
 7.2. Manufacturing
8. HOERBIGER Product Portfolio
9. Summary
1. Introduction
1. Introduction

Synchronizers are the key elements in manual transmissions (MT) as well as in double-clutch transmissions (DCT) and automated manual transmissions (AMT).

This paper gives an overview of their function, layout and design and explains possible problems and solutions.

Finally it is shown what tools and processes are needed to develop, test and manufacture components and complete synchronizer systems.

As the worldwide largest independent manufacturer HOERBIGER develops and supplies components and systems for all types of manual transmissions, double-clutch transmissions, and automated manual transmissions.
2. Driveline / Transmission / Shift Mechanism
2. Driveline / Transmission / Shift Mechanism

Synchronizers are the central component of the transmission featuring interfaces to the output, the clutch and, by way of the gear shift, to the driver.

The layout and design of the synchronizers play an essential role in how the driver experiences the gear shift.

The following pages give an overview of
- the variety of driveline concepts
- the interfaces of the transmission to the vehicle
- the interface of the transmission to the driver and
- the installation and the interfaces of the synchronizer in the transmission

The layout and the design of synchronizer systems has to take into account all these aspects. The validation and the assessment of the synchronizer systems have to be made at test rig as well as in the vehicle.
2. Driveline / Transmission / Shift Mechanism

Driveline
2. Driveline / Transmission / Shift Mechanism

Driveline

stub axle

left (short) side shaft

transmission

right (long) side shaft

shift lever

costant velocity joint

damper mass

costant velocity joint
Synchronizers work as cone brakes. They brake or accelerate the components marked in blue and the secondary mass of the clutch. To synchronize means to adjust the speed of shaft and gear wheel!
Shift Mechanism

1. Driveline / Transmission / Shift Mechanism

Shift Mechanism

- Shift
- Select

Inner shift mechanism

Outer shift mechanism

Copyright by HOERBIGER Antriebstechnik GmbH (Germany), 2013. Any kind of use in part or in full provides HOERBIGER Antriebstechnik GmbH's prior written consent.

Basics of Synchronizers
3. The Synchronization
3. The Synchronization

Synchronizers can be structured by the number of cones used. The next 3 pages show the exploded views of single-, dual- and triple-cone synchronizers and the descriptions of the single components.

The synchronization process always follows the same sequences. The sleeve is moved by the shift fork towards the gear to be engaged. As long as there is a speed difference between the sleeve/hub-system and the gear wheel the sleeve is blocked by the blocker ring and the synchronizer rings create a friction torque. When the speeds are synchronized the sleeve can be moved further and engages into the spline of the engagement ring at the gear wheel.

The sequences can be followed by clicking through the pages 16 to 21.

They are then explained in detail on pages 22 to 28.
3. The Synchronization

Single-cone Synchronizer
3. The Synchronization

Dual-cone Synchronizer
3. The Synchronization

Triple-cone Synchronizer

- Engagement ring
- Inner ring coated
- Intermediate ring
- Blocker ring
- Sleeve
- Hub
- Detent
3. The Synchronization

The Synchronization Process - Neutral
3. The Synchronization

The Synchronization Process - Presynchronization
3. The Synchronization

The Synchronization Process - Synchronization
3. The Synchronization

The Synchronization Process - Blocking Release
3. The Synchronization

The Synchronization Process - Engagement
3. The Synchronization

The Synchronization Process - Gear shifted
3. The Synchronization

The Synchronization Process - neutral position
3. The Synchronization

The Synchronization Process - *presynchronization*

- The fork is moving the sleeve in axial direction until the detents have contact with the blocker ring.
- The detent force (50-100 N) creates a friction torque in the synchronizer.
- This friction torque positions the blocker ring radially. I.e. the indexing lugs at the blocker ring bend to the pockets in the hub. This positions the blocking teeth at the blocker ring against the teeth of the sleeve.
3. The Synchronization

The Synchronization Process - *blocking position*

- With higher shift force the sleeve moves towards the blocking teeth of the blocker ring
- The teeth of the sleeve push against the blocking teeth of the blocker ring
- Speed difference is reduced until \(n_1 = n_2 \)
At speed difference '0', i.e. $n_1 = n_2$ the blocking condition is no longer valid.

- The sleeve can turn back the blocker ring and move forward through the spline of the blocker ring.
3. The Synchronization

The Synchronization Process - *free flight phase*

- The sleeve moves forward towards the spline of the engagement ring.
- In this phase a new speed difference between n1 and n2 can occur.

3D-picture

- The sleeve moves forward towards the spline of the engagement ring.
- In this phase a new speed difference between n1 and n2 can occur.
3. The Synchronization

The Synchronization Process - *engagement*

- The sleeve enters into the engagement ring.
- Speed differences between n1 and n2 can cause bumps at the entering into the engagement ring.
3. The Synchronization

The Synchronization Process - *gear shifted*

- When the sleeve has completely moved into the engagement ring the gear is shifted.

- Back tapers at the teeth of the sleeve and the engagement ring avoid decoupling under load.

![Diagram of synchronization process](image-url)
4. Basics for Synchronizer Calculation
4. Basics for Synchronizer Calculation

The dimensioning and calculation of synchronizers has to take into account numerous parameters. The developer has to ask his customers to provide the relevant data and also has to perform screening tests to determine the c.o.f. level and characteristic of the customer's transmission oil in interaction with the different friction linings.

The capacity of a synchronizer has to be checked for the torque transmission when shifted and the synchronizing of speed difference. For torque transmitting components (sleeve, hub and engagement ring) standard FEM calculations are performed. For the calculation of the synchronizing system specific inhouse tools are in use.

The following pages list the necessary input data which will enter into the calculation sheets. The pages 34 to 40 show the basic formula needed to calculate the blocking safety and the load data for the friction cones.

The characteristic values for different friction linings can be found in the data sheets in the download sector.
4. Basics for Synchronizer Calculation

Input

- installation space
- inertia to be synchronized
- speed difference to be synchronized
- torque to be transmitted
- transmission oil
- customers requirements (e.g. synchronizing time, shift travel, shift impulse, shift force, drag torque, load cycles, ...)
- interfaces (spline data, clearance of gear wheels, sleeve groove...)
- test definition for validation
4. Basics for Synchronizer Calculation

Limiting Factors

The capacity of a synchronizer is limited by

- torque capacity of Sleeve/Hub-System and Engagement Ring
- capacity of Friction Material (sliding speed, surface pressure, friction power, friction work)
- heat dissipation through the oil, the synchro rings and the gear cone
- transmission oil (viscosity and thermal stability)

(see also next page)
4. Basics for Synchronizer Calculation

Transmission Oil

Basic functions and requirements:

- Cooling
- Lubrication / Wear protection
- Corrosion protection
- Anti foam
- Friction characteristic
- Compatibility with elastomers (sealings)
- Temperature and viscosity characteristic

- Screening test is necessary to determine the c.o.f. level and characteristic
- Viscosity determines drag torque and influences shift quality
4. Basics for Synchronizer Calculation

Layout Calculation

HOERBIGER inhouse calculation tools
4. Basics for Synchronizer Calculation

Calculation of Blocking Safety

Friction Torque:

\[T_F = \frac{n_c \cdot \mu \cdot d_m \cdot F_a}{2 \cdot \sin \alpha} \text{ [Nm]} \]

Blocking Release Torque:

\[T_Z = F_a \cdot \frac{d_D \cdot \cos \beta}{2} - \mu_D \cdot \sin \frac{\beta}{2} \]

Blocking Safety:

\[T_F > T_Z \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n_c)</td>
<td>-</td>
<td>number of cones</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>[°]</td>
<td>cone angle</td>
</tr>
<tr>
<td>(\beta)</td>
<td>[°]</td>
<td>chamfer angle</td>
</tr>
<tr>
<td>(\mu)</td>
<td>[-]</td>
<td>c.o.f. of cone</td>
</tr>
<tr>
<td>(\mu_D)</td>
<td>[-]</td>
<td>c.o.f. of chamfers</td>
</tr>
<tr>
<td>(d_m)</td>
<td>[mm]</td>
<td>mean cone diameter</td>
</tr>
<tr>
<td>(d_D)</td>
<td>[mm]</td>
<td>pitch diameter</td>
</tr>
<tr>
<td>(F_a)</td>
<td>[N]</td>
<td>shift force at sleeve</td>
</tr>
<tr>
<td>(n_c)</td>
<td>[-]</td>
<td>number of cones</td>
</tr>
</tbody>
</table>

Blocking safety is given if \(T_F > T_Z \)
4. Basics for Synchronizer Calculation

Calculation of specific friction work q_A

$$q_A = \frac{W}{A} \text{ [J/mm}^2\text{]}$$

$$W = \frac{1}{2}(-J \cdot \Delta \omega^2 \pm T_v \cdot \Delta \omega \cdot t_R)$$

$$\Delta \omega = \Delta n_{SYN} \times \frac{2\pi}{60}$$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_R</td>
<td>[s]</td>
<td>slipping time</td>
</tr>
<tr>
<td>T_v</td>
<td>[Nm]</td>
<td>drag torque</td>
</tr>
<tr>
<td>J</td>
<td>[kgm2]</td>
<td>mass moment of inertia</td>
</tr>
<tr>
<td>n_{SYN}</td>
<td>[min$^{-1}$]</td>
<td>speed difference to synchronize</td>
</tr>
<tr>
<td>A</td>
<td>[mm2]</td>
<td>total friction surface</td>
</tr>
<tr>
<td>W</td>
<td>[J]</td>
<td>friction work</td>
</tr>
</tbody>
</table>
4. Basics for Synchronizer Calculation

Calculation of mean specific friction power P_{mA}

\[
P_{mA} = \frac{q_A}{t_R} \text{[W/mm}^2]\text{] or } P_{mA} = \frac{P_m}{A} \text{[W/mm}^2]\text{]}
\]

\[
P_m = \frac{W}{t_R}
\]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_R</td>
<td>[s]</td>
<td>slipping time</td>
</tr>
<tr>
<td>P_m</td>
<td>[W]</td>
<td>mean friction power</td>
</tr>
<tr>
<td>q_A</td>
<td>[J/mm2]</td>
<td>specific friction work</td>
</tr>
<tr>
<td>A</td>
<td>[mm2]</td>
<td>total friction surface</td>
</tr>
<tr>
<td>W</td>
<td>[J]</td>
<td>friction work</td>
</tr>
</tbody>
</table>
4. Basics for Synchronizer Calculation

Calculation of max. sliding speed v_{max}

\[v_{\text{max}} = \Delta n_{\text{SYN}} / 60 \times \pi \times d_{\text{max}} \text{ [m/s]} \]

- d_{max} [mm] max. cone diameter
- n_{SYN} [min\(^{-1}\)] speed difference to synchronize
4. Basics for Synchronizer Calculation

Calculation of mean specific pressure p_m

$$p_m = \frac{F_N}{(A/ n_c)} \quad [\text{N/mm}^2]$$

$$F_N = \left(\frac{T_F}{(\mu \times d_m / 2)} \right) / n_c$$

$$T_F = J \times \Delta \omega / t_R$$

- **t_R** [s] slipping time
- **J** [kgm2] mass moment of inertia
- **T_F** [Nm] friction torque
- **n_c** [-] number of cones
- **d_m** [mm] mean cone diameter
- **μ** [-] coefficient of friction c.o.f.
- **F_N** [N] normal force on cone
- **A** [mm2] total friction surface
4. Basics for Synchronizer Calculation

Calculation of max. specific friction power P_{max}

$$P_{\text{max}} = \rho_m \times v_{\text{max}} \times \mu \quad [\text{W}]$$

- μ [-] coefficient of friction c.o.f.
- v_{max} [m/s] max. sliding speed
- ρ_m [N/mm2] mean specific pressure
4. Basics for Synchronizer Calculation

Characteristic values for calculated parameters

HOEBRIGER HS90 – Sinter Layer
- Improved c.o.f. characteristic
- Stable c.o.f. at high loads
- Adapted to latest oil developments
- Suitable for HOEBRIGER Classic and HOEBRIGER SKS

<table>
<thead>
<tr>
<th>Load parameters</th>
<th>Standard values</th>
<th>Permanent load</th>
<th>Overload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sliding speed (m/s)</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Surface pressure (N/mm²)</td>
<td>8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Friction work (J/mm²)</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Friction power (W/mm²)</td>
<td>4,5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>C.O.F. values</td>
<td>0.08 < µ < 0.120</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HOEBRIGER HC300 – Carbon Dual Layer
- A friction lining for all high-end applications
- Benchmark for comfort and robustness
- Suitable for HOEBRIGER Classic

<table>
<thead>
<tr>
<th>Load parameters</th>
<th>Standard values</th>
<th>Permanent load</th>
<th>Overload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sliding speed (m/s)</td>
<td>14</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Surface pressure (N/mm²)</td>
<td>10</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Friction work (J/mm²)</td>
<td>1.5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Friction power (W/mm²)</td>
<td>15</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>C.O.F. values</td>
<td>0.1 < µ < 0.140</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Product Information
Friction Linings
5. Interfaces
5. Interfaces

The definition of interfaces between the synchronizer system and the transmission is essential for a proper function and durability.

- The neutral position of the shift fork determines the clearance of the synchronizer rings. Low clearance will cause drag torque and in extreme cases overheat and destroy the friction lining.

- The clearance of the gear wheels determine the maximum possible axial space for the synchro rings. Too much clearance can cause a decoupling of blocker rings from the hub or what is more likely from blocker rings and inner rings in multi-cone synchronizers.
5. Interfaces
Shift Fork / Gear Wheel

The neutral position of the shift fork should not exceed +/- 0.35 mm.

The clearance between hub and gear wheel should not exceed 0.4 mm.

Drawing shows gear wheels touching the hub
6. Functional Problems and Solutions
6. Functional Problems and Solutions

During development and testing functional problems have to be detected and solutions have to be fixed.

Typical problems and possible solutions are summarized on the next pages.

- To avoid functional problems already in the design phase it is necessary to combine long-time experience and high level of data quality.

- To solve occurring problems a detailed analysis has to be carried out in advance by recording shift curves in the vehicle or transmission test rig.

- Solutions can be developed and tested first in a simulation model before manufacturing prototypes for validation in the vehicle.
To reduce the shift force following measures can be taken:

- increase diameter d_m
- increase number of cones n_c
- increase c.o.f. (friction lining, oil)
- reduce cone angle α

! to avoid self-locking $\mu < \tan\alpha$
6. Functional Problems and Solutions

Shift Quality - 2nd load bump

The 2nd load bump occurs when the sleeve enters into the engagement ring. If the resistance is too high, it can be felt at the shift knob.

Low 2nd load bump

High 2nd load bump
6. Functional Problems and Solutions

Shift Quality - 2nd load bump

The 2nd load bump occurs when the sleeve enters into the engagement ring. If the resistance is too high it can be felt at the shift knob.

Reasons for 2nd load bumps can be:

- high drag torque, esp. in cold transmission > reduces input speed in free flight phase
- high friction torque T_F, > oscillation of driveline
- losses in shift system > high friction in cable shift
- clutch not 100% open

Possible measures:

- low viscosity oil, low friction bearings
- reduced chamfer angle (blocking safety must be respected)
- reduced losses in shift system (low friction cable shift)
6. Functional Problems and Solutions

Shift Quality - clash

Clash occurs when the blocking safety is not given. In this case the sleeve moves towards the engagement ring before the speed difference has been synchronized.

blocking safety: \(T_F > T_Z \)
6. Functional Problems and Solutions

Shift Quality - clash

Clash occurs when the blocking safety is not given. In this case the sleeve moves towards the engagement ring before the speed difference has been synchronized.

Reasons for clash can be:

- c.o.f. too low for design layout
- c.o.f. changes over lifetime > degradation of lining or oil
- oil viscosity too high at low temperature > cold clash
- high wear > loss of wear gap

Possible measures:

- increase blocking safety (chamfer angle, cone angle, friction lining)
- improve groove geometry (cold clash)
- improve c.o.f. increase in presynchronization (detent force)
- increase wear gap
6. Functional Problems and Solutions

Shift Quality - clash

A specific reason for clash can also be extreme wear and/or drop of c.o.f. due to an overheating of the friction rings

Reasons for overheating can be:

- misuse (shifting against closed clutch, ...)
- insufficient design (e.g. too small clearance, ...)
- shift fork position decentralized

Possible measures:

- instruction of drivers
- reduce tolerances for gear clearance
- install detent to center the sleeve to the hub
After the gear has been shifted the sleeve decouples from the engagement ring.

Reasons for gear jump out can be:

- back taper angle too small
- tumbling of the sleeve due to run out failures at the connected parts
6. Functional Problems and Solutions

Shift Quality - blocking of 1st- or R-gear

Gear can’t be engaged when the vehicle is not moving

Reasons for blocking of 1st- and R-gear:

- self-locking ($\mu > \tan\alpha$)
- double engagement
- detent not released
- clutch not 100% open
7. HOERBIGER Capabilities

7.1. Design & Development
7.1. Design & Development

Strategic Target of HOERBIGER Product Development is

'Technological Cost Leadership'.

Under Technological Cost Leadership we assume the capability to simplify the overall synchronizer system to generate functional high-value synchronizer systems at costs below those of today's state of the art synchronizers.

The Technological Cost Leadership enables us to offer to our customers tailored system design with the best price-performance ratio.

To achieve this ambitious target it is essential

- to possess fundamental knowledge on tribology, materials and production processes and
- to fully understand the requirements for function and durability of synchronizer components and systems,
- to apply suitable tools for calculations, simulations and design,
- to make use of relevant test rigs for validation of function and durability and
- to be able to assess shift quality by measurement and subjective evaluation.
7.1. Design & Development

Development Tools

Development follows Stage-Gate Process

Simulation

Testing

Tribology

Design
7.1. Design & Development

Development Tools

Concept Layout / Design
- System Layout
- Concept Definition
- Design Engineering
- Analysis of Functionality
- Optimization of existing Systems
7.1. Design & Development

Development Tools

Modeling
- modular model design
- efficient modeling
- adapted to vehicle environment
- dynamic 3-dimensional visualization

Simulation
- statistical parameter variation
- parameter variation with DoE
- analysis of complex interactions and optimization of subsystems

Validation
- check of characteristic values at components
- system validation by rig and vehicle measurements
7.1. Design & Development

Development Tools

- tribometer
- synchronizer test rig HOERBIGER μ-comp
- synchronizer test rig ZF SSP180
- torsional and linear pulser
- transmission test rig
- drive train test rig
- in vehicle shift quality measurement
7.1. Design & Development

HOERBIGER µcomp Synchronizer Test Rig
7.1. Design & Development

HOERBIGER Shift Simulator
7.2. Manufacturing
7.2. Manufacturing

As a result of the efficient and flexible use of metal forming technology, machining, heat treatment, and friction lining production, HOERBIGER has efficient manufacturing technologies at its disposal - with sustainable cost advantages for the customer.

- **Metal-forming and Machining**
 HOERBIGER employs powerful metal-forming presses and modern machining equipment to produce ready-to-install synchronizer components and systems. In-house tool & die design as well as automated production lines assure high quality standards. This consistently allows HOERBIGER to offer products with excellent features at an excellent cost-benefit ratio.

- **Heat treatment**
 Modern heat treating equipment assures high-quality as well as careful finishing of HOERBIGER synchronizer components.

- **Friction lining production (sintered and carbon linings)**
 HOERBIGER manufactures all sintered friction linings in-house. Moreover, HOERBIGER offers a wide range of specially developed carbon friction linings. Sintered and carbon friction linings are applied to the synchronizer rings in automated equipment.

From highly complex components to complete ready-to-install systems:

HOERBIGER always offers customers outstanding products in the best quality at a balanced cost-benefit ratio.
7.2. Manufacturing
Production Technologies - overview

Innovative products and systems through excellence in production and technology

- machining
- metal forming technology
- heat treatment
- friction material production and friction material bonding
- assembly
- testing technology

We set standards through top quality and state-of-the-art technology.
7.2. Manufacturing
Production Technologies for Sleeves + Engagement Rings

... a unique combination of processes

- turning
- milling
- broaching
- chamfering
- back taper milling
- heat treatment
- washing
7.2. Manufacturing

Production Technologies for Synchro Rings

... complex components are produced in their final shape (net shape)

- deep drawing
- stamping
- fine blanking
- cold forming
- bending
- heat treatment
7.2. Manufacturing

Production Technologies for Friction Linings

... unique product portfolio

- manufacturing of sintered metallic linings
- manufacturing of carbon linings
- bonding of sintered and carbon linings
7.2. Manufacturing

Assembly and Testing

... pre-finished and fully-automatic for ready-to-install systems

- friction systems
- sleeve/hub systems
- complete synchronizer groups
- running-in
- functional testing
8. HOERBIGER Product Portfolio
8. HOERNIGER Product Portfolio

Synchronizer Systems

- Most innovative and competent partner for synchronizer development
- Unique portfolio of development tools for simulation, testing & assessment
- First address for solving of problems regarding shift comfort and reliability

HOERNIGER - Classic Line

The proven synchronizer for all applications

- 1 Cone System 1CS
- 2 Cone System 2CS
- 3 Cone System 3CS

HOERNIGER - SKS Line

The synchronizer without blocking teeth

- 1 Cone System 1CS
- 2 Cone System 2CS
8. HOERBIGER Product Portfolio

Friction Systems

HOERBIGER - Classic Line
The proven synchronizer for all applications

- First in market with sheet metal formed friction systems
- In high volume series production since 1999
- Best reliability for wide range of applications
- Problem solver in terms of shift quality, efficiency and durability

- 2 Cone System **2CS**
 - 3 Cone System **3CS**
 - with HS Sinter or HC Carbon Lining
8. HOERBIGER Product Portfolio

Blocker Rings

HOERBIGER - Classic Line
The proven synchronizer for all applications

- BRC with HC Carbon Lining
- BRC with HS Sinter Lining
- BRE with HS Sinter Lining

- Only HOERBIGER can offer Sinter and Carbon friction linings in sheet metal rings
- In high volume series production for MT and DCT applications for successful OEMS and gearbox manufacturers
- Excellent quality records due to fully automated manufacturing lines
- Due to better wear resistance also as replacement for brass rings with molybdenum coating
8. HOERBIGER Product Portfolio

Synchronizer Sleeves

HOERBIGER - Classic Line
The proven synchronizer for all applications

- **Sliding Sleeves** from rolled blanks

- HOERBIGER produces sleeves with an experience of more than 75 years

- Most modern production equipment has been developed exclusively with leading machine suppliers like Präwema

- In-house process chain including production of rolled blanks ensures optimal quality control

- High volume production in place at two production sites in Germany and one in China

- Quality in regards of spline error and chamfer angles as well as safety against cracks and breakage superior compared to sheet metal or powder metal sleeves
8. HOERBIGER Product Portfolio

Engagement Rings

HOERBIGER - Classic Line
The proven synchronizer for all applications

- HOERBIGER combines in-house know how on stamping and machining
- High volume production since decades
- Highest quality in regards of spline error and chamfer angles

Engagement Rings from stamped blanks
9. Summary
9. Summary

By supplying the synchronizer, HOERBIGER provides the central component of the transmission featuring interfaces to the output, the clutch and, by way of the gear shift, to the driver.

The layout and design of the synchronizers play an essential role in how the driver experiences the gear shift.

Long lasting experience is needed for the development of synchronizer components and systems. The vertical integration of all production steps ensures highest quality and cost effectiveness.

Close cooperation between HOERBIGER and its customers is required to achieve reliable and comfortable synchronizer solutions.